Please be patient while the object screen loads.
Электронная библиотека (репозиторий)
Томского государственного университета
English
Русский
Home
Show
All
Show
Quick Collection
Browse ↓
Communities & Collections
By Title
By Creator
By Subject
By Date
Additional Resources
Search History
Эндаумент фонд ТГУ!
Впиши своё имя в историю университета
-
Сделать пожертвование
-
Advanced Search
Preview
Add to "Quick Collection"
Description
Size
Format
The distribution of the absolute maximum of the discontinuous stationary random process with Raileigh and Gaussian components
1 MB
Adobe Acrobat PDF
Read
Download
#гауссовский случайный процесс
#случайные процессы
#рапределение вероятностей
#абсолютный максимум
Title
The distribution of the absolute maximum of the discontinuous stationary random process with Raileigh and Gaussian components
Creator
Chernoyarov, Oleg V.
|
Salnikova, Alexandra V.
|
Faulgaber, Alexander N.
|
Zakharov, Alexander V.
Date
2019
Description
The purpose of this research is to find the asymptotically exact expressions for the distribution function and for the probability that the absolute maximum of the sum of statistically independent homogeneous Gaussian and Rayleigh random processes with nondifferentiable covariance function will exceed the specified threshold. In this study, the applicability boundaries of the introduced theoretical formulas are also determined by means of statistical simulation. The recommendations are presented concerning the application of the obtained expressions depending on the observation interval length and the interrelation of Gaussian and Rayleigh components of the analyzed random process. © 2019, International Association of Engineers. All rights reserved
Relationships
Show Relationship Browser for this Object
collection(s)
Научное управление
Identifier
смотреть в электронном каталоге НБ ТГУ
Type
статьи в журналах
Source
Engineering letters. 2019. Vol. 27, № 1. P. 53-65
Language
eng
Created: 03-03-2020
923 Visitors
697 Hits
249 Downloads
Научное управление
The distribution of the absolute maximum of the discontinuous stationary random process with Raileigh and Gaussian components
^ DIV >